456 research outputs found

    A systematic review and meta-analysis of Macroplastique for treating female stress urinary incontinence.

    Get PDF
    Introduction and hypothesisMacroplastique® (polydimethylsiloxane injection) is a minimally invasive urethral bulking agent with global clinical literature describing its use over 20 years. This study critically assessed the safety and effectiveness outcomes for adult women treated with Macroplastique for stress urinary incontinence (SUI) through a systematic review and meta-analysis.MethodsA systematic review of the scientific literature from 1990 to 2010 was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to quantitatively summarize the safety and effectiveness of Macroplastique for female SUI. A total of 958 patients from 23 cohorts were eligible for inclusion and were analyzed. Random-effects models were used to estimate the improvement and cure rates following treatment at three time periods: short-term (<6 months), mid-term (6-18 months), and long-term (>18 months). Expanded models assessed the effect of reinjection rate on successful treatment outcomes. Adverse event rates were aggregated and reported.ResultsImprovement rates were 75 % [95 % confidence interval (CI), 69-81] in the short-term, 73 % (95 % CI, 62-83) in the mid-term, and 64 % (95 % CI, 57-71) long-term. Cure/dry rates were 43 % (95 % CI, 33-54), 37 % (95 % CI, 28-46), and 36 % (95 % CI, 27-46) over the same respective follow-up periods. Higher study reinjection rates were associated with improved long-term SUI outcomes. No serious adverse events were reported.ConclusionsThis quantitative review supports Macroplastique as an effective, durable, and safe treatment option for female SUI. Meta-analytic evidence suggests that long-term therapeutic benefit is frequently maintained, with some patients requiring reinjection

    Improving growth and productivity of tomato by some biostimulants and micronutrients with or without mulching

    Get PDF
    Two field experiments were doled out during 2014 and 2015 growing seasons to assess tomato growth and yield as affected by some biostimulants and micronutrients with or without mulching type. Certain physiological characters were also examined, plant height, the number of branches per plant chlorophyll a, nitrogen %, red fruit weight and total yield per plant as well as fruit firmness and ascorbic acid concentration in fruit was increased in tomatoes under black plastic mulch compared with bar soil. Application of either biostimulants or micronutrient used to increase all growth and yield characters as well as photosynthetic pigments, ions percentage, and fruit quality. Additive effects were shown under mulching, seaweed extract proved to be the most effective in this respect. It could be recommended that spraying tomato crop at 35 and 50 days from transplanting with 500 mg/l seaweed extract under clear or black plastic mulch in order for inducing the highest yield and improve fruit quality

    Vapor Flow Patterns During a Start-Up Transient in Heat Pipes

    Get PDF
    The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe

    A review of solar methane reforming systems

    Get PDF
    Because of the increasing demand for energy and the associated rise in greenhouse gas emissions, there is much interest in the use of renewable sources such as solar energy in electricity and fuels generation. One problem with solar energy, however, is that it is difficult to economically convert the radiation into usable energy at the desired locations and times, both daily and seasonally. One method to overcome this space-time intermittency is through the production of chemical fuels. In particular, solar reforming is a promising method for producing chemical fuels by reforming and/or water/carbon dioxide splitting. In this paper, a review of solar reforming systems is presented, as well as a comparison between these systems and a discussion on areas for potential innovation including chemical looping and membrane reactors. Moreover, a brief overview of catalysis in the context of reforming is presented

    Ureteroarterial Fistula

    Get PDF
    Ureteral-iliac artery fistula (UIAF) is a rare life threatening cause of hematuria. The increasing frequency is attributed to increasing use of ureteral stents. A 68-year-old female presented with gross hematuria. She had prior low anterior resection for rectal cancer and a retained ureteral stent. CT abdomen and pelvis showed a large recurrent pelvic mass and a retained stent. The patient underwent cystoscopy which showed a normal bladder. Upon removal of the stent, brisk bleeding was noted coming from the ureteral orifice. Antegrade pyelogram was done which revealed a UIAF. Angiography was done and a covered stent was placed. Multiple treatment options are available. All must consider management of the arterial and ureteral side. The arterial side may be addressed by primary open repair, embolization with extra-anatomic vascular reconstruction, or endovascular stenting. The ureter can be managed with nephroureterectomy, ureteral reconstruction, placement of a nephrostomy tube, or ureteral stenting. Being minimally invasive, we believe that endovascular stenting should be the preferred therapeutic option as it also corrects the source of bleeding while preserving distal blood flow

    The State of the Art in Multilayer Network Visualization

    Get PDF
    Modelling relationship between entities in real-world systems with a simple graph is a standard approach. However, realityis better embraced as several interdependent subsystems (or layers). Recently, the concept of a multilayer network model hasemerged from the field of complex systems. This model can be applied to a wide range of real-world data sets. Examples ofmultilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domainof graph visualization, there are many systems which visualize data sets having many characteristics of multilayer graphs.This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only forresearchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as wellas those developing systems across application domains. We have explored the visualization literature to survey visualizationtechniques suitable for multilayer graph visualization, as well as tools, tasks and analytic techniques from within applicationdomains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future researchdirections for addressing them

    Accuracy & convergence of parametric dislocation dynamics

    Get PDF
    Abstract In the parametric dislocation dynamics (PDD), closed dislocation loops are described as an assembly of segments, each represented by a parametric space curve. Their equations of motion are derived from an energy variational principle, thus allowing large-scale computer simulations of plastic deformation. We investigate here the limits of temporal and spatial resolution of strong dislocation interactions. The method is demonstrated to be highly accurate, with unconditional spatial convergence that is limited to distances of the order of interatomic dimensions. It is shown that stability of dislocation line shape evolution requires very short time steps for explicit integration schemes, or can be unconditionally stable for implicit time integration schemes. Limitations of the method in resolving strong dislocation interactions are established for the following mechanisms: dislocation generation, annihilation, dipole and junction formation, pileup evolution

    Characterization of aggregate behaviors of torrefied biomass as a function of reaction severity

    Get PDF
    Several studies have shown that torrefaction can improve various characteristics of biomass, including grindability, flowability, and energy density, at least at the microscopic level. Furthermore, the improvements are often represented as a monotonic function of the torrefaction severity. However, the existing literature is less clear on whether or not these improvements persist at the aggregate level. This paper demonstrates that, at the aggregate level, using differently torrefied biomass in an experimental cookstove as a case study, the relationship between the improvements and torrefaction severity tells a much more complex story than a simple, monotonic correlation. Notably, by defining and measuring various cookstove performance characteristics ranging from stove temperature, effective heat output, and emission profiles, and how these characteristics vary with the severity of torrefied fuel, we conclude that, contrary to the conventional wisdom, more severe torrefaction in many cases does not always lead to more improved fuel characteristics
    corecore